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Financial Econometrics A
January 14, 2019

Please note there is a total of 8 questions that you should provide answers
to. That is, 3 questions under Question A, and 5 under Question B.

Question A:

Consider the model for xt ∈ R given by

xt = σtzt, σ2t = ω + αx2t−1

with (zt) an i.i.d. process, and zt is scaled t-distributed and given by

zt =

√
v − 2

v
τt,

where τt is t-distributed with v = 5 degrees of freedom. In particular, we
have

Eτt = 0, V (τt) = E
(
τ 2t
)

=
v

v − 2
=

5

3
and E

(
τ 4t
)

=
3v2

(v − 4) (v − 2)
= 25.

Moreover, the model parameters satify that ω > 0 and α ≥ 0.

Question A.1: Show that xt is weakly mixing with Ex4t <∞ if α < 1/3.

Question A.2: Consider the extended ARCH(2) model,

xt = σtzt, σ2t = ω + αx2t−1 + βx2t−2,

with ω > 0 and α, β ≥ 0, and zt still i.i.d. scaled t-distributed with v = 5.

The Gaussian QMLE θ̂ =
(
ω̂, α̂, β̂

)′
is obtained by maximizing L (θ) given

by

L (θ) = − 1

T

T∑
t=1

(
log σ2t (θ) +

x2t
σ2t (θ)

)
,

σ2t (θ) = ω + αx2t−1 + βx2t−2.
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It follows that,

Sβ (θ) = ∂L (θ) /∂β =
1

T

T∑
t=1

(
x2t

σ2t (θ)
− 1

)
x2t−2
σ2t (θ)

.

With θ0 = (ω0, α0, 0) (that is, the true value of β is zero), show that if
0 < α0 < 1/3 then √

TSβ (θ0)
d→ N (0,Ω)

with

Ω = 8E

(
x2t−2

ω0 + α0x2t−1

)2
.

Question A.3:
In the ARCH(2) model we wish to test the hypothesis β = 0 by the Quasi

likelihood ratio statistic

QLR =
(
L(θ̂)− L

(
θ̃
))

,

where θ̃ maximizes L (θ) with β = 0. The asymptotic distribution of theQLR
statistic is not χ21. Explain why it is not χ

2. And discuss which distribution
it has. Relate your answer to Question A.2.
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Question B:

Consider the model for xt ∈ R given by

xt = bst + astxt−1 + εt, (B.1)

where the error term εt satisfies

εt ∼ i.i.d.N(0, σ2). (B.2)

Moreover,
bst = 1(st = 1)b1 + 1(st = 2)b2, (B.3)

and
ast = 1(st = 1)a1 + 1(st = 2)a2, (B.4)

where st is a state variable that takes values in {1, 2} according to the tran-
sition probabilities

P (st = j|st−1 = i) = pij, (B.5)

and 1(st = i) = 1 if st = i and 1(st = i) = 0 if st 6= i for i = 1, 2. We
assume throughout that the processes (εt) and (st) are independent. The
model parameters satisfy b1, b2, a1, a2 ∈ R and σ2 > 0.

Question B.1: When is the process (st) weakly mixing?

Question B.2: Let f(xt|xt−1, st) denote the conditional density of xt given
(xt−1, st). Provide an expression for f(xt|xt−1, st).

Question B.3: In the following we assume that p11 = 1 − p22 =: p ∈ (0, 1)
such that (st) is an i.i.d. process with P (st = 1) = p. This implies that
f(xt|xt−1) = f(xt|xt−1, st = 1)P (st = 1) + f(xt|xt−1, st = 2)P (st = 2) > 0.
Use this to show that xt satisfies the drift criterion with drift function δ(x) =
1 + x2 when

a21p+ a22(1− p) < 1.

Question B.4: Consider the restricted version of the model in (B.1)-(B.4),
where b1 = b2 = 0. Maintaining the assumptions from Question B.3, and
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assuming that (st) is observed, we consider the log-likelihood function (up to
a constant),

LT (θ) =
T∑
t=1

[
1 (st = 1)

{
−1

2
log(σ2)− (xt − a1xt−1)2

2σ2
+ log(p)

}
+ 1(st = 2)

{
−1

2
log(σ2)− (xt − a2xt−1)2

2σ2
+ log(1− p)

}]
,

where θ = (p, a1, a2, σ
2). Show that the Maximum Likelihood Estimator for

a1 is

â1 =

∑T
t=1 1(st = 1)xtxt−1∑T
t=1 1(st = 1)x2t−1

.

Assume that the joint process (st, xt−1) is weakly mixing such that E[x2t−1] <

∞. Argue that â1
p→ a1 as T →∞.

Question B.5: Suppose that the process (st) is unobserved, but still satisfies
the i.i.d. assumption, i.e. p11 = (1 − p22) = p ∈ (0, 1). Then the estimator
â1 derived in Question B.4 is infeasible. Consider instead the function

L†T (θ) = E[LT (θ)|x1, ...xT ].

It holds (still with b1 = b2 = 0) that

L†T (θ) =
T∑
t=1

[
P †t (1)

{
−1

2
log(σ2)− (xt − a1xt−1)2

2σ2
+ log(p)

}
+ (1− P †t (1))

{
−1

2
log(σ2)− (xt − a2xt−1)2

2σ2
+ log(1− p)

}]
.

where P †t (1) = P (st = 1|xt).
Explain briefly the role of L†T (θ) for the estimation of θ.
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